BEMS 4000

In Europe, motor vehicles (light-duty vehicles) will, in the future, be tested for braking emissions in the WLTP cycle. The basis for this is the directive ECE/TRANS/WP.29/GRPE, in short, UN GTR. The particle sizes in brake emissions are in the nanoparticle range up to about 10 μ m in concentrations of up to 2x10⁶ particles/cm³.

Therefore, emissions in this size range are tested for TPN (Total Particle Number, solid and volatile) and SPN (Solid Particle Number, solid particles only, in particles/cm³). The PM_{2.5} and PM₁₀ values (in $\mu g/m^3$) are also considered.

The test of $PM_{2.5}$ and PM_{10} (in $\mu g/m^3$) is done purely gravimetric after the entire test is finished, meaning there is one emission value for $PM_{2.5}$ and one for PM_{10} for the overall test cycle.

Continuous and time-resolved monitoring of PM_1 , $PM_{2.5}$, and PM_{10} and also particle size distribution can be realized by scattered light ...

BENEFITS

- **APPLICATIONS**
- Easy integration into the BEMS System
- Time-resolved measurement of $\mathsf{PM}_{2.5}$ and PM_{10}
- Additional measurement of particle size distribution and PM_1
- Robust, compact design

Time-resolved measurement of brake emissions

DATASHEET

Optical light-scattering	Measurement range (number C _N)	< 2 • 10 ⁴ particles/cm ³
0.18 – 18 μm	Volume flow	9.5 l/min
Max. 64 (32/decade)	Power consumption	Approx. 200 W
	0.18 – 18 μm	$(number C_N)$ $0.18 - 18 \mu m$ Volume flow